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Abstract. The absolute strengths of the Eα = 1175 keV resonance in the 6Li(α, γ)10B reaction and of the
Eα = 814 keV resonance in the 7Li(α, γ)11B reaction have been measured to ωγ = 366 ± 38 meV and
ωγ = 300 ± 32 meV, respectively, in good agreement with previous values. These resonances can be used
to measure the absolute acceptance of the recoil separator ERNA to a precision of about 10%.

PACS. 24.30.-v Resonance reactions – 25.40.Lw Radiative capture – 26.20.+f Hydrostatic stellar nucle-
osynthesis

1 Introduction

The 12C(α, γ)16O reaction (Q=7.16MeV) is one of the
key reactions of nuclear astrophysics [1]. For this rea-
son its cross-section at the relevant Gamow energy of
E0 = 0.3 MeV must be known with a precision of at least
10%. In spite of tremendous experimental efforts over the
last thirty years one is still far from this goal. To im-
prove the situation, a new experimental approach is in
preparation at the 4MV Dynamitron tandem accelerator
in Bochum, called ERNA—European Recoil separator for
Nuclear Astrophysics [2]. In this approach, the reaction is
studied in inverse kinematics, 4He(12C,γ)16O, i.e. a 12C
ion beam is guided into a windowless 4He gas target and
the 16O recoils are counted in a ∆E-E telescope placed
in the beam line at the end of the separator, which fil-
ters the intense 12C projectiles from the 16O recoils. One
of the most important separator characteristics is its ac-
ceptance in angle and energy. Due to the emission of the
capture γ-rays, the recoils emerging from the gas target
have sizable angular and energy spreads. In order to make
a reliable cross-section measurement, ERNA must trans-
port the 16O recoils (of chosen charge state) with 100%
transmission from the gas target to the telescope.
One way of determining the acceptance experimen-

tally is to use nuclear reactions with well-known abso-
lute cross-sections, such as resonant α-capture reactions
involving the 4He gas target of ERNA. If a reaction
with a chosen resonance energy has similar kinematics
as 4He(12C,γ)16O, the angular and energy spreads of the
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16O recoils can be simulated. This condition is fulfilled by
the narrow and strong resonances at ER,c.m. = 706 keV
in 4He(6Li, γ)10B (Q=4.46MeV, ΓR = 1.7 eV) and
ER,c.m. = 518 keV in 4He(7Li, γ)11B (Q=8.66MeV,
ΓR = 1.8 eV). However, the strength ωγ of these reso-
nances is not known with sufficient precision, i.e. better
than 10% (table 1). Thus, we remeasured both strengths.

2 Experimental procedure

The experiments were carried out at the 5MV Van de
Graaff accelerator of the ATOMKI, Debrecen, Hungary,
with an energy stability and energy spread of about 1 keV.
The resonance strengths were measured using an α-beam
(about 5 and 10µA) on Li targets. The targets were pre-
pared by evaporating LiF with natural isotopic abun-
dances onto 0.2mm thick Ta backings. The thickness of
the targets was estimated from the evaporation procedure
to be about 150µg/cm2, consequently the α-energy loss
in the target (∼ 200 keV at Eα = 1175 keV) is much
larger than the widths of the resonances and the energy
spread of the α-beam. The collected charge was measured
with a precision current integrator. A suppression volt-
age was applied at the entrance of the target chamber
to minimize the effects of secondary electrons. The tar-
get was cooled by air flow. The γ-ray yield was observed
with a 40% high-purity germanium detector. This detec-
tor was placed at 55◦ with respect to the beam direction,
with the front face of the detector at a distance of 3.5 cm
from the target. At γ-energies below 4MeV (relevant
to 6Li(α, γ)10B), the absolute efficiency of the detector
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Table 1. Results of previous strength measurements.

6Li(α, γ)10B 7Li(α, γ)11B
ER,c.m. = 706 keV, ΓR = 1.7 eV ER,c.m. = 518 keV, ΓR = 1.8 eV

Author ωγ (meV) Author ωγ (meV)

Meyer-Schützmeister and Hanna [3] 330± 80 Bennett et al. [8] 600(a)

Alburger et al. [4] 410± 90 Jones et al. [9] 630(a)

Forsyth et al. [5] 440± 70 Green et al. [10] 500(a)

Spear et al. [6] 400± 60 Hardie et al. [11] 310± 47
Adopted value [7] 400± 40 Adopted value [12] 310± 47
(a) Uncertainty not given.

Fig. 1. Decay scheme of the Ex = 5164 keV level in 10B.
The relative intensities (branchings) of the different transitions
—taken from table 10.6 of ref. [7]— are also indicated.

was measured using calibrated radioactive sources. In this
energy region the measured points were fitted with an
η = a × Eb function, where E is the γ-energy and a and
b are constants. At γ-energies above 4 MeV (relevant to
7Li(α, γ)11B) resonant reactions emitting cascade γ-rays
were used to determine the efficiency: 27Al(p,γ)28Si (at
ER,lab=767 and 992 keV), 23Na(p,γ)24Mg (ER,lab=1318
and 1417 keV) and 39K(p,γ)40Ca (ER,lab = 1344 keV).
When the low-energy member of the emitted cascade fell
into the energy region of the radioactive sources, the effi-
ciency was matched to the above function. The measured
high-energy points were fitted with a 3rd-degree polyno-
mial matching the low-energy function at about 3 MeV.

2.1 The 6Li(α, γ)10B reaction

The ER,c.m. = 706 keV (ER,lab = 1175 keV) resonance in
6Li(α, γ)10B populates the 5164 keV excited state in 10B.
Figure 1 shows how this state decays to the ground state.
The most intensive cascade transitions at Eγ =414 and
718 keV (figs. 1 and 2) were used for the strength de-
termination. We scanned the resonance energy region at
ER,lab = 1175 keV in 1 keV steps in order to measure the
resonance profile. On top of the resonance we used larger
energy steps (2 to 3 keV) in order to prove that the target
is sufficiently thick, i.e. there is a horizontal plateau at en-
ergies above ER,lab. Figure 3 shows the resonance profile
measured with the 414 and 718 keV γ lines.

Fig. 2. Sample γ-spectrum taken on top of the 1175 keV res-
onance in 6Li(α, γ)10B. The 414 and 718 keV γ lines used for
the analysis as well as some other strong lines are identified.

Fig. 3. Resonance profile of the ER,lab = 1175 keV resonance
in 6Li(α, γ)10B derived from the yield of the Eγ =414 and
718 keV lines.

2.2 The 7Li(α, γ)11B reaction

The ER,c.m. = 518 keV (ER,lab = 814 keV) resonance in
7Li(α, γ)11B populates the Ex = 9182 keV excited state
in 11B which cascades predominantly (86.6%) via the
4.44MeV excited state to the ground state emitting an
Eγ = 4737 keV primary and an Eγ = 4445 keV secondary
γ-ray. The 4445 keV line has a small contribution (12.5%)
also from the de-excitation through the Ex = 6743 keV
level. These branching ratios are taken from table 11.4
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Fig. 4. Resonance profile of the ER,lab = 814 keV resonance in
7Li(α, γ)11B derived from the yield of the 4445 and 4737 keV
γ lines.

Fig. 5. Sample γ-spectrum taken on top of the 814 keV reso-
nance in 7Li(α, γ)11B. The 4445 and 4437 keV γ lines used for
the analysis are indicated together with their escape peaks.

of ref. [12]. The resonance strength was derived from the
yield of these two γ-radiations. Figure 4 shows the reso-
nance profile measured with the two γ-radiations. As can
be seen, the requirement of a thick target is fulfilled also
in this case.
Figure 5 shows a typical γ-spectrum measured on top

of the resonance. The Eγ =4445 and 4737 keV lines to-
gether with their escape peaks are indicated by arrows.

3 Analysis and results

Using the thick-target yield y, the resonance strength ωγ
can be calculated using the formula

ωγ =
MT

MP +MT

ε

2π2λ2
y , (1)

where MT and MP are the masses of target and projec-
tile, respectively, ε is the stopping power of the target at
the resonance energy, and λ is the de Broglie wavelength
of the projectile. The stopping power was obtained from

the SRIM code [13]. The thick-target yield is derived from
the step in the resonance function, i.e. the difference of the
number of detected γ’s above and below the resonance di-
vided by the number of incident particles and corrected
for the branching ratio of the used transition and for the
detector efficiency. Because of the relatively close target-
detector geometry and of the γ-rays emitted in cascade
transitions, summing corrections (about 10% and 5% for
6Li(α, γ)10B and 7Li(α, γ)11B, respectively) were neces-
sary in the case of both resonances [14].
Experimental angular distributions are available in the

literature for all four studied transitions in the two reac-
tions [3,10,15]. The results show that the gamma yield
measured at 55 degrees represents the angle-integrated
yield with better than 1% accuracy in the studied four
transitions. This together with the error arising from the
finite detector size has been incorported in the 7% uncer-
tainty of the detector efficiency.

3.1 Results for the 6Li(α, γ)10B reaction

The strength of the ER,lab = 1175 keV resonance was de-
termined from the γ yields of the Eγ = 414 and 718 keV
transitions: ωγ414 = 371 ± 29 meV and ωγ718 = 362 ±
22 meV. The quoted errors contain only the uncertain-
ties of the thick-target yield determination and of the re-
ported branching ratio of a given transition. These uncer-
tainties are specific for the two independent analyses. The
weighted average of these two values is ωγ = 366±17 meV.
To give the final uncertainty, systematic errors which are
common for both analyses have to be included. These are
from the stopping power (5%), current integration (3%)
and detector efficiency (7%). Adding these components
quadratically, we get our final result ωγ = 366± 38 meV.

3.2 Results for the 7Li(α, γ)11B reaction

Similarly, the strength of the ER,lab = 814 keV resonance
was determined using the yields of the 4445 and 4737 keV
γ lines: ωγ4445 = 316±18 meV and ωγ4737 = 285±16 meV.
The weighted average including systematic errors leads to
ωγ = 300± 32 meV.

4 Conclusions

Our result for the strength of the Eα = 1175 keV reso-
nance in 6Li(α, γ)10B is within the uncertainty range of
the adopted value ωγadopted = 400 ± 40 meV [7]. Based
on the weighted average of the results of all available
measurements we propose a new standard value ωγnew =
387 ± 27 meV which is consistent with all measurements
but its uncertainty is reduced from 10% to 7%. Our new
value for the strength of the Eα = 814 keV resonance in
7Li(α, γ)11B is in excellent agreement with the adopted
value ωγadopted = 310 ± 47 meV based on a single mea-
surement. Averaging these two values we propose as a new
standard value ωγnew = 304 ± 26 meV, where the uncer-
tainty is reduced from 15% to 9%.
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With the results from previous and present work the
precision of the strength of the two resonances has be-
come better than 10% allowing for the ERNA project (and
other recoil separators) to perform a reliable acceptance
measurement based on these resonant reactions.
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